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A statistical topographic model for exciton luminescence 
spectra 

M Wilkinson, Fang Yang, E J Awtin and K P O'Donnell 
Depanment of Physics and Applied Physics, John Anderson Building, University 01 
Strathclyde, Glasgav G4 ONG, UK 

Received 3 July 1992 

AbirmcL Some lcatum 01 the absorption and luminescence spectra of ncilons in 
disordered m semiconductors appear to be ncariy universal over a wide range 01 samples. 
I n  particular, the 06set of the peaks of these two spectra is proportional to their 
linewidths. over a range of WO orden 01 magnitude. We shau that the relationship 
beween these spectra can be understood in terms 01 the slatislical properties of a 
Gaussian random lunction: the absorption spectrum is proportional lo lhe probability 
distribution of the function itself, whereas the luminescence spectrum is proportional to 
the distribution 01 the heights of the minima of the function. 

1. Introduction 

Figure l(a) shows the absorption (solid curve) and luminescence (dashed curve) 
spectra of a semiconductor system. The absorption spectrum includes a large peak 
due to direct creation of excitons (hydrogenically bound electron-hole pairs). The 
luminescence peak is due to the recombination of the exciton pairs. The sample 
is a multiple-quantum-well system, in which the excitons are confined to one of a 
number of two-dimensional layers sandwiched between regions of a higher bandgap. 
Figure l(b) is another spectrum for a similar system, this time produced from different 
materials. The similarity between the lineshapes and relative offsets of the spectra 
in these two pictures is quite marked. Figure 2 summarizes information from many 
such experiments: the offset of the peak of the luminescence curve from that of the 
absorption curve is found to be proportional to the full width at half maximum of the 
absorption peak, over a range of nearly two orders of magnitude. The figure contains 
data from many different samples containing excitons confined to two dimensions 
(different mixtures of semiconductors, layer widths, and different growth techniques). 
This paper will show that the striking near universality of the relative shift of the two 
spectra is explained by a very simple model involving the geomehy of a Gaussian 
random function. 

We describe a simple geometrical model for the physical origin of the absorption 
and luminescence spectra in section 2. Our model implies that the absorption 
spectrum is proportional to the probability distribution of a random function E( x, y) 
(which represents the energy of a stationary exciton at position (z, y)). After the 
excitons are created, they lose energy rapidly by exciting phonons, and become 
trapped in minima of E(=,  y)  (see figure 3). The luminescence spectrum is therefore 
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Pipam 1. Abmrption s p e c ”  (solid curve) and luminesann spcctmm (dashed cuwe) 
of WO multiplcquantum-well semiconductor systems. Ihe c u w a  Imk very similar, 
despite the fact that the materials are different. The OUO arrows indicate the oEset S 
of the WO peaks, and the Cull width at half-maximum W of the absorption line. ’lbe 
figures are d r a w n  from (a) Stanley (1991), CdZn’IWnTk, and (6) Brandt ef d (1992), 
I W G a A s .  
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Pipare 2. Plot of the offset of the peaks of the absorption and luminescence spectra, 
versus the full width at half-maximum of the former. The plot combines data for a 
variety of disordered m exciton systems, with different growth techniques, layer widths 
and direct gap semiconductors. For brevity on4 the first authors of the source papers 
are indicated. The straight line is our Ihmretical prediction. 

proportional to the distribution of the heights of minima of this function In section 3 
we compute the distribution of heights of minima for a Gaussian random function. 
We find that the results depend on the spatial correlation function via a single 
dimensionless parameter. In section 4 we introduce a physical model for the spatial 
correlation of the exciton energy, and compare the results with experimental data. 
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Figure 3. Representative plot of a Gaussian random function, shaving local minima. An 
aciton created at position 10 could be trapped in local minima at 21 or q, but not a1 
z 3 .  

We find reasonably good agreement, indicated by the theoretical line in figure 2. The 
theory described in section 3 gives the unweighted distribution of heights of minima: 
in section 5 we introduce a refinement of the model which weights each minimum 
according to the probability that it will trap an exciton. The results are close to those 
from the unweighted distribution of minima. 

2. A statistical model for the luminescence spectrum 

First we consider the form of the absorption peak. In the absence of disorder the peak 
would be very sharp, because (unlike for unbound electron-hole pairs) consemtion 
of momentum implies that the exciton can only be created with one energy. Because 
the photon carries little momentum, the exciton is created very close to the bottom 
of its band. The widths of the absorption peaks in figure 1 are determined by 
inhomogeneous broadening due to disorder. The energy of an exciton in the ground 
state depends upon the width of the potential well in which it is confined, and the 
well width varies randomly with position in the plane. We assume that the length 
scale over which the well width varies is long compared to the width L of the wells: 
this implies that the ground state energy of a static exciton at position (2, y) is a 
well defined smooth function, which we denote by E(z, y). 

There is also a contribution to the inhomogeneous broadening due to fluctuations 
in the local composition of the semiconductor alloys from which the layers are built 
up. Bulk alloys usually show much smaller broadening than the multilayer systems 
which we consider (typically a few meV as opposed to several tens of meV). We 
therefore regard the effect of the alloy fluctuations as negligible. 

Many forms of disorder, including the specific model we discuss in section 4, will 
give rise to fluctuations 6L in the well width which are Gaussian distributed. If we 
also assume that the typical fluctuations in the well width are small compared to the 
mean value, the energy function E( I, y) will also have Gaussian statistics. The level 
height of the function E ( x ,  y) will therefore be assumed Gaussian distributed, with 
probability distribution 

If the potential is sufficiently slowly varying, an exciton can only be created at position 
(z, y) with the negligible centre of mass momentum provided by the incoming photon, 
and will therefore have energy E(z,y). If the incoming radiation has a continuous 



8866 M Wilkinson et a1 

spectrum, with uniform intensity in the region of the exciton absorption line, the 
probability of an exciton being created at (I, y) is independent of position. qua t ion  
(2.1) therefore also describes the sharp peak in the absorption spectrum. 

Now we consider the luminescence peak. This is shifted toward lower energies 
because the excitons can lose energy before they decay. Tie-resolved studies 
of spectral hole burning indicate that the energies of excitons can change over a 
timescale of typically ZOps, much shorter than the half-life for decay of excitons, 
typically 800~s  (Hegarty and Sturge 1985). The predominant mechanism of energy 
loss for the excitons appears to be by the excitation of phonons: if the absorption 
spectrum is probed with narrow spectral lines, it is possible to observe features in the 
luminescence spectrum which are shifted from the probe frequency by multiples of 
the frequency of the optical phonons (O'Donnell and Henderson 1992). These results 
lead to the following picture of the luminescence process: after the exciton is created 
at position (z,,,y,,) with energy E,, = E(z,,y,), it will move into regions where 
the potential energy E(z,y) is less than E,, and the excess energy E,, - E ( z , y )  
appears as kinetic energy. The moving exciton is able to excite phonons, and as it 
does so it loses kinetic energy. Eventually, if it does not decay in the meantime, it will 
end up trapped in a local minimum of the potential energy E(z,y) (see figure 3). 
Because the exciton lifetime is much longer than the timescale associated with energy 
transfer to phonons, most of the excitons are trapped close to a local minimum of 
the potential energy E ( = ,  y)  when they decay. 

We assume a purely classical model for the localization of the excitons, i.e. we 
assume that the excitons do not tunnel out of local minima, and that the energy of a 
trapped exciton is equal to  the energy of the minimum, implying that the zero-point 
energy of the centre of mass degree of freedom of the exciton is negligible. In the 
appendix we show that these assumptions are valid in the limit where the correlation 
length of the fluctuations in the well width is large compared to the well width. We 
also consider in greater depth the distinction between the type of disorder considered 
here (a smooth variation of the well widths), and the short-ranged substitutional alloy 
disorder which leads to Lifshitz tails in the density of states (Lishitz 1967). Some of 
the experimental literature on the relationship between absorption and luminescence 
spectra in semiconductor alloys is also discussed in the appendix. 

According to our model the luminescence spectrum is proportional to the 
distribution of heights of minima of E ( z ,  y), with each minimum weighted according 
to the probability that it will trap an exciton. The trapping probability depends on 
the exact details of the model for the loss of energy of the excitons, and for the sake 
of simplicity we initially assume that the mean probability for a min ium to trap 
an exciton is independent of the height of the minimum. We will therefore assume 
that the luminescence spectrum is proportional to the (unweighted) distribution of 
heights of minima. This assumption reduces the problem of finding the luminescence 
spectrum to a purely geometrical problem, that of finding the distribution of heights 
of minima of an isotropic Gauss random function in two dimensions. 

The problem of counting minima of Gaussian random functions of one variable 
was considered by Rice (1945) in a theoretical analysis of electrical noise. 
extension of the method to counting the stationary points of a two dimensional 
Gaussian random function was described by Longuet-Higgins (1957a. b), in the context 
of studies of the surface of the ocean, and references to further applications to the 
surfaces of materials and tribology can be found in an article by Greenwood ( 1 9 W  
Lukes and 'Itipath (1978) have considered an application of the theory Of Gauss 
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random functions to the problem of Anderson localization in the band tail. None 
of these works contains a calculation of the result we require here, namely the 
probability density for the heights of minima of a statistically isotropic function in 
two dimensions, and we therefore give a fairly detailed calculation below. 

3. Distribution of heights of minima 

Consider the problem of computing the number of minima per unit area for 
a random function f(z,y). We assume that the joint probability distribution 
P(f,f,,f ,f,,,fyY,fry) of the function f, its first derivatives f, = aft&, 
fy = afray, and its second derivatives f,,, f y y , f z y  at a given point (z,y) is 
known. Let N( f) df be the number of minima of f(z, y) per unit area with the 
height of the minimum between f and f + df. We can compute N( f )  as follows: 
if 6P is the probability that a minimum of the function with height between f and 
f + d f  lies within an infinitesimal circle of radius 6R surrounding the point (z,y), 
then 

N (  f) d f = 6P/1r6 R2. (3.1) 

Assuming that a stationaty point (f, = fy = 0) does indeed lie close to (2,~). the 
displacement 62 = (62,6y) of this point from (I, y) is given by 

(66;) = -M-’ (k) 
where M is the matrix of second derivatives 

f=, fYY 
(3.3) 

and f,, f, are the values of the derivatives evaluated at our test point (2, y). From 
(3.2), we see that for a given matrix M, there is an elliptical region in the space of 
f=, fy values such that 6z2 + 6y2 < 6RZ. This region is centred on the origin and 
has area 

(3.4) 

where D = det(M) = f,,fYy - f:.,. The probability of finding a stationary point 
with height between f and f + d f wlthin a radius 6R is therefore 

6P = * 6 R 2 d f L l d f , , L I d f y y  L I d f z y  oP(f,O,O,f,,,f,,,f,,). (3.5) 

This expression can be combined with (3.1) to give an expression for the density 
of stationaty points. In order to get an expression for the density - of minima, it is 
necessary to exclude areas where either of the eigenvalues of M is negative from the 
region of integration in f,,, f y y ,  f,, space. A condition for both eigenvalues to be 
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positive is D = det(M) > 0,  T = tr(M) > 0. The density of minima can therefore 
be written in the form 

where T = tr(M) = f,, + f9v, and O(z) is the unit increasing step function. 
We now consider how to evaluate this density of minima for a Gaussian random 

function with isotropic statistics. We can assume without loss of generality that the 
mean value of the function is zero. A Gaussian random function of two variables, 
f ( z , y )  with mean value zero can be generated by convolution of a white noise 
function W ( z ,  y) with a smoothing function F ( z ,  y): 

f ( z , y ) = j m  -m jm -m dz’dy‘ F ( z - z ’ , y - y ’ )  W(d,y’).  (3.7) 

The white noise function is defined by the properties 

( W ( ~ , Y ) )  = 0 (w(z,y)W(z’ ,  Y‘)) = a ( ~  - ~ ’ ) S ( Y  - Y‘) (3.8) 
where the angle brackets denote either an ensemble or a spatial average. In the 
context of the problem considered in this paper it is natural to assume that the 
statistical properties of f ( z , y )  are isotropic: this can be obtained by choosing the 
smoothingfunctionF tobea func t ionof r=  ( ~ ~ + y ~ ) ’ / ~ o n l y , i . e .  F ( z , y )  = F ( r ) .  
The statistics of the Gaussian random function f(z, y) can also be specified using 
the correlation function c ( R )  or the power spectrum S(k), which are related to the 
smoothing function F ( r )  as follows 

c ( R )  ( f ( r  + R ) f ( r ) )  = / / d r  F ( r  + R)F(r) 

S(k) ( l / V ) l j ( k ) I Z  = lF(k)IZ (3.9) 
where f ( k )  and p ( k )  are the Fourier transforms of f ( r )  and F ( r ) ,  and V is the 
area of the region. Because of isotropy, c and S are functions of R = IRI and 
k = Ikl only. 

In order to utilize (3.6) we will require the joint probabilty distribution function 
of the function and its first and second derivatives. A standard result shows that 
the joint probability distribution of a set of N correlated Gaussian random variables 
(Xl, ..., X,) = X is given by 

P ( X , ,  ..,X,) = [(2a)Ndet(c)]-112exp (-iXrc-lX) (3.10) 

where is the covariance matrix, with elements 
c.. = (XiXj). (3.11) 

The elements of the covariance matrix can be expressed in terms of moments of the 
power spectrum s( k), for example: 

$1 

J - m  J -m  * 

m 

= - 2 ~ 1 -  dk[dB cos20k3S(k) = - a 1  dk k’ S(k).  (3.12) 
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We can assume that the following conditions hold without any loss of generality 

(f) = 0 ( f 2 )  = 1 (fZ) = U;) = 1. (3.13) 

These conditions can always be satisfied by scaling f , z  and y respdively. For an 
isotropic function satisfying (3.13), we find (by means of computations similar to 
(3.12)) that the following relationships exist between the correlations of the function 
and its derivatives: 

(fZJ = (f3 = 3(fZy) = 3(fz,fyy) (f,,fPY) = (fyyfzy) = 0 
(ff,,) = (ffyy) = -1 (ff,,) = 0. (3.14) 

If we choose the elements of the vector X = ( X , ,  .., X,) in (3.10) as follows, 

then the covariance matrix takes the nearly diagonal form 

1 0 0 - 1 0 0  
0 1 0 0  0 0  

- 1 O O 2 a O O  
0 0 0 0  a 0  
0 0 0  0 O a  

where we have written 

(3.16) 

a = (fZy,. (3.17) 

Note that D = X i  - X,? - X i  and that T = 2X4, so that the region of integration 
selected by the step functions in (3.6) is a cone in X,, X, ,  X ,  space, with vertex at 
the origin, with its principal axis along the X ,  axis. In the Xi variables, only X ,  = f 
-and X ,  = fT are correlated, and their joint distribution function is 

(3.18) 

The density of minima is therefore 

Nf) = 7 J m d R  p ( f , R ) / /  d z d y ( R Z  - ~ ~ - y ~ ) e - ( ~ ' + ~ ' ) ~ ~ ~  (3.19) 
(2*) 0 A 

where A is the disc z2 + y2 < R2, and for clarity we have changed the names of 
X , ,  X,, X ,  to R, I, y. Calculating the integral over A in polar coordinates gives 

N(f) = & j m d R  p(f,R)[RZ+2a(e-Rz12a - l)]. (3.20) 
0 
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Combining (3.18) and (3.20) we obtain a formula for N( f) in the form of an integral, 
depending on a single parameter a. The integral can be evaluated analytically using 
some results from Gradshteyn and Ryzhik (1980): the result is 

where e&( z )  is the complementary error function (Abramowitz and Stegun 1970). 
The probability distribution of heights of minima is obtained by dividing this function 
by its integral from --CO to -CO, which has value 

Mu(a)  = a / ( Z r & ) .  (3.22) 

The mean and variance of the heights of the minima can also be computed 
analytically: the first and second moments of (3.21) are 

*G M 2 ( a ) = -  1 
M , ( a )  = -- 3(2rz) 2rr (3.23) 

which leads to the following surprisingly simple expressions for the mean p ( a )  and 
variance V( a) of the distribution 

V ( a ) = l + -  (3.24) 
3rr 3 

-4 
a @ ( a )  = - 6 

The distribution of heights of minima is plotted in figure 4 for the case a = 1; we 
have not plotted other cases because the distribution of heights of minima resembles 
a Gaussian distribution quite closely for all values of a. For large a the distribution 
of heights of minima tends towards the Gaussian distribution of the function itself. 

We have seen that in the case where the normalizations (3.13) are satisfied the 
distribution of minima depends on a single parameter a. In the general case where 
(3.13) does not hold, a is the following dimensionless combination of moments 

a = (f:,)(f2)/(3(fZ)2). (3.25) 

For an isotropic random function the value of a is always greater than 4: this lower 
limit obtains when the power spectrum S( k) is sharply peaked at a non-zero Value 
of k (Le. when the function has a 'ring' spectrum). The parameter a onb exists if 
S( k) decays faster than k-6.  

4. Comparison with experimental data 

The distribution of heights of minima was shown in section 3 to depend on the 
correlation function of the disorder through a single dimensionless parameter a, 
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0 .50 ,  

f 
F)ym 4 The probability distribution of heights of minima for a Gaussian random 
function, when the dimensionless parameter a is unity. The Gaussian distribution of 
the function itself is included for reference. These curves clearly resemble the pairs of 
sprtra in Bgurc 1. 

defined by (3.25). In order to compare the theory with experimental results we must 
first consider the form of the spatial correlation function of the disorder. In this 
section we describe a physically reasonable model which predicts that the spatial 
correlation function will be a Gaussian for some types of samples. We will show 
that the theory is in reasonable agreement with experimental data if we assume a 
Gaussian spatial correlation function. 

It is clear that surface diffusion must play a role in producing high-quality multiple- 
quantum-well semiconductor structures, because random deposition of atoms could 
not produce structures in which the well widths are defined to monolayer accuracies 
in the best samples. Experimental evidence for this comes from the fact that when 
multiple-quantum-well samples are grown, inhomogeneous broadening of the spectral 
lines is reduced if the sample is left for a period of time at a high temperature 
between growhig layers of different materials: surface diffusion smoothes out any 
irregularities which have occurred in the process of building up the uppermost layer. 

The observation that diffusion is important in the growth process suggests the 
following simple model for the correlation function of the well width fluctuations. 
The probability of a particle being displaced through a vector r = (2, y) into an 
element of area d z  dy by surface diffusion is 

P d ( z , y ) d z d y  = [ l / (Sr iDt ) ]  exp[-(z2 t y2)/42)t]dzdy 

p(.,y)=Jm -m dz'Jm -m ~ ~ / P ~ ( ~ - " ' , Y - Y ' ) P u ( ~ ' , Y ' )  

(4.1) 

where D is the diffusion constant The density p (z ,y )  of material at position ( z , y )  
after the diffusion process is given by 

(4.2) 

where pu(z, y) is the density of material on the surface before diffusion is allowed to 
occur. Clearly po(z ,  y) is a random function with unknmvn properties. If we assume 
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that this function either has no spatial correlations, or that its spatial correlations 
are very short ranged compared to 6, then pu can be modelled by a white 
noise function and (4.2) becomes analogous to (3.7). From (4.1) we see that the 
smoothing function is Gaussian, which implies that the spatial correlation function is 
therefore also a Gaussian. This is a reasonable model for the spatial correlations if 
the fluctuations in the layer width are much larger than a monolayer in width. Many 
samples have average effective layer width fluctuations of one monolayer or less: we 
do not have a theory for the spatial correlation function in these systems. 

We have argued that for certain samples the correlation function is Gaussian, 
which leads to the value a = 1 for the dimensionless parameter in section 3. We 
now use this value for 4 in a comparison of the theoretical distribution (3.21) with 
some experimental data. In figure 2 we have summarized data from a wide range of 
experiments (Bastard et 41 1984, Brandt et 01 1992, Gobel 1988, Hegarty and Sturge 
1985, Pistol and Liu 1992, Shahzad et a1 1990, 'hguchi 1990, Yang and O'Donnell 
1992). We have plotted the ratio of the displacement S of the peaks of the spectra 
against the full width at half-maximum W of the absorption peak, and found that 
they are proportional: S = yW. As well as data such as those shown in figure 1, 
which correspond quite closely to the idealized spectra shown in figure 4, we have 
also included data from some experiments where the lineshapes are asymmetric, due 
to luminescence from impurities. We included only measurements at temperatures 
low enough that kT is small compared to the linewidth U. If we assume that the 
peak of the luminescence coincides with the mean value of the distribution of heights 
of minima, and that the absorption peak is a Gaussian with variance U, the constant 
of proportionality is predicted to be 

y = I p ( a ) l / ( 2 a d z E )  = 2 / ( & X z ) .  (4.3) 

In the case of a Gaussian correlation function we have a = 1, so that 

y 0.553. (4.4) 

A l i e  has been drawn with this slope on figure 2, and gives a reasonably good fit to 
the data. 

Our comparison with the experimental data has assumed a Gaussian form for 
the spatial correlation function We note that other physically reasonable forms for 
the correlation function give similar values for y, however. For example, if the 
smoothing function in (3.7) were a Lorenaian ( F ( r )  = 1/(A2 t r')), then we 
would have (I = 5/3, which would only reduce the value of y by 23%. The results 
are therefore fairly insensitive to the value of a, provided we confine ourselves to 
smooth, monotonically decreasing correlation functions 

5. A refinement of the model 

In earlier sections of this paper we assumed that the probability of a minimum 
trapping an exciton is independent of its depth. In this section we consider a 
generalization and refinement of the model for which we can, in a limiting case, 
avoid making this assumption. We will address the following question. What is the 
luminescence intensity at energy El in response to a monochromatic excitation of unit 
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intensity at energy E,? We are able to give a precise answer to this question (apafi 
from an unknown multiplicative constant) when Ez - E, is small compared to the 
linewidth U. The result of this analysis is independent of E, (provided Et > E,). We 
speculate that even when ( E, - E,)/u is not small, the resulting function of El may 
provide a more accurate theory for the luminescence spectrum than the unweighted 
distribution of heights of minima obtained in section 3. 

Aceording to the model described in section 2, the luminescence intensity in the 
energy range El < E < El + dE,, given excitation of unit intensity concentrated in 
the energy range Ez < E < Ez+dE,, will be proportional to the fraction of the area 
of the (I, y) plane for which E, < E (  I, y) < E, + dE,, and for which the particles 
created between these contours end up trapped in minima with depth E, in the range 
El < E, < El + dEl. We call this fractional area r( E,, EZ)dEIdEz. In general it 
is extremely diiiicult to calculate r( El, Ez) because, unlike the distribution of heights 
of minima, it depends on non-local properties of the function (such as which minima 
are enclosed by a given contour). Another complication is that, in general, I-( E,, Ez) 
depends on the dynamical processo by which the excitons lose energy, as well as the 
topography of the energy surface E(I, y). 

When E, is close to E,, we can however determine T ( E , ,  E,) analytically, using 
the following argument. When this condition is satisfied, we can approximate the 
behaviour of the function E( I, y) by a Thylor series expansion about the minimum 
at E, rz E,. The leading-order terms are a quadratic form in z and y: 

E ( z , y )  = E o  + f[f=,,(z - xu)' + fYy (y  - + 2fSy(z - IO)(Y - ~ u ) l  + . . .@.I) 

If Ez is only slightly greater than E,, the contour E (  I, y) = Ez contains an ellipse 
centred on (xu,yu), and any particles created on this section of the contour are 
inevitably trapped by the minimum at (z,,y,). The area enclosed by the elliptical 
contour at E, is 

A = 2 ~ (  E, - E,)/& (5.2) 

where D = f d Y y  - f,,. Differentiating (5.2) with respect to E,, we find that 
the contribution from this minimum to the fractional area r(E,,E,)dE,dE, is 
2 s d E Z / f i .  The fractional area ~ ( E , , E , ) d E , d E ,  is therefore the density of 
minima between E, and E, + dE,, weighted by the area 2 r d E 2 / f i  of the 
elliptical contour between E, and Ez+dEZ surrounding each minimum. The function 
r(E,, E,) is therefore independent of Ez in this approximation, provided Ez > E,: 
we can therefore write r ( E l ,  E,) = @(E2 - E,)@(E,), where @(I) is the step 
function. The function @(E) is given by . 

where p(f,  R) is given by (3.18). This is similar to the density of minima given 
by (3.6), with the minima weighted by the factor D-'/', which gives less weight to 
minima for which the curvature at the minimum is large. 

We have not succeeded in evaluating the weighted density of minima, @ ( E )  
analytically. Figure 5 shows the numerically computed distribution @( E )  for the case 
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f 
P@re 5. The weighted distribution of heighls of minima + ( E )  of a Gauss random 
function when a = 1. Ihc Gaussian distribution of the funcIion is shavn for reference. 

a = I, with the area under the curve normalized to unity. The mean and variance 
of @ ( E )  are plotted as a function of a in figure 6. The weighted distribution @ ( E )  
is similar in form to the unweighted distribution, but the mean value is somewhat 
less negative: for instance when a = 1 the mean and variance are p = -1.1104..., 
V = 0.6866 ..., compared to p = -1.3029 ..., V = 0.7011 ... for the unwcighted 
distribution. The mean value is higher because the second derivatives f,,, f,, are 
inversely correlated with f, and the weighting function D-'/* is a decreasing function 
of these second derivatives. 

6. Conclusions 

We have pointed out a nearly universal relationship between the exciton absorption 
and luminescence spectra of semiconductor quantum-well systems: the absorption 
spectrum is close to Gaussian in form, and the luminescence spectrum is similar in 
shape, but shifted to lower energies by approximately one standard deviation. 

We have explained these results in terms of a model in which the energy E Of a 
stationary exciton at position (x,y) is assumed to be a Gaussian random function. 
The Gaussian absorption peak is explained by assuming that the exciton is created 
at a random position in the (x, y) plane. The shift of the luminescence peak is 
explained by the fact that the excitons lose energy by excitation of phonons. This 
occurs on a timescale much shorter than the lifetime of the excitons, and by the 
time the excitons decay, most of them are sitting in minima of the random function 
E(z,y). We can therefore model the luminescence spectrum by the distribution of 
minima of a Gaussian random function. 

In section 3 we calculated the distribution of heights of minima of an isotropic 
Gauss random function. We found that the distribution depends on one dimensionless 
parameter characterizing the spatial correlation function. Although the distribution 
is a very complicated function, the analytical formulae for the mean and variance are 
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remarkably simple. In section 4 we argued that the spatial correlation function is 
determined by surface diffusion processes during the growth of the sample: a simple 
model for this leads to the prediction that the correlation function is Gaussian. The 
‘Stokes shift’ of the luminescence peak predicted by this model is in good agreement 
with the observed value, although the lineshapes are only in qualitative agreement 
with the theory. For physically reasonable correlation functions the distribution of 
minima is not very sensitive to the value of the dimensionless parameter a. A more 
detailed comparison with experimental results would require more information on the 
spatial correlation function of fluctuations of the well widths. 

In section 5 we described a refinement of the model, which takes account of the 
fact that different minima have different probabilities of trapping excitons, depending 
on the curvature of the function in the region of the minimum. The results are similar 
to those for the unweighted distribution of minima. 
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Appendix 

The purpose of this appendix is to clarify the conditions under which the classical 
localization model of section 2 is valid, and to distinguish them from the conditions 
under which the bottom of the exciton spectrum would be expected to exhibit ‘Lifshitz 
tails’. The condition for classical localization will be expressed in tenns of an 



8816 M W h o n  et a1 

inequality involving purely geometrical properties of the quantum wells (equation 

Consider the creation of excitons in a system without disorder. In this case 
conservation of momentum implies that the momentum of the centre of mass degrees 
of freedom of the exciton must equal that of the incoming photons. The photon 
wavenumber is very small compared to the width of the Brillouin zone, implying that 
the excitons are all created with one energy, which is effectively the bottom of the 
exciton band. 

We have considered disorder in the form of a random variation of the width L 
of the potential wells (Le. of the layers of lower-bandgap material). We assume that 
the well widths are a smooth function of position (I, y) in the plane of confinement, 
with a correlation length A. The energy E( I, y) of a stationary exciton is therefore 
a random function with correlation length A. The model considered in section 2 
assumes that the exciton can be localized classically in minima of E(z,y), and that 
the width of the absorption peak is determined by the standard deviation U of the 
distribution function of E ( = ,  y). We now consider the conditions under which both 
of these assumptions are valid. 

We can use classical considerations to analyse the localization of the excitons if the 
depth of a typical minimum, which is of order U, is large compared to the zero-point 
energy of an exciton trapped in the minimum. The linear extent of a minimum is of 
order A, implying that a particle oscillating in the (z,y) plane about the minimum 
has a classical frequency of order w - m. The zero-point energy Tw is 
therefore: 

('44)). 

6Eu - ( h f X ) a .  

We find that 6Eu < U if the following inequality is satisfied 

It is informative to convert (A2) into an inequality involving 6L. The confinement 
energy of a particle in a potential well is E, - h2/mL2.  The relationship between 
the fluctuations of E of size U and those of L is therefore 

U - ( h 2 f m L 2 )  6 L  f L .  (W 

Using (B), the inequality (A2) expressing the condition for classical localization can 
be expressed purely in terms of geometrical quantities: 

X2 6L > L'. (A4) 

Next consider the width of the absorption peak. One contribution to the width of 
this peak comes from the standard deviation U of the energy function E ( z ,  y). This 
must be compared with another contribution: in the presence of disorder, excitons 
may be created with a range of Centre of mass momenta 6 p  - h f X (where X is the 
correlation length of the disorder). This gives a contribution to the width of the 
exciton absorption peak of size 

SE, - h2fmX2. (a) 
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Using (A3) we can rewrite (A5) in the form 

(A6) 

It is now clear that 6Ep e U if the inequality (A4) is satisfied. We have seen that 
if (A4) is satisfied, the excitons are classically localized, and that the width of the 
absorption peak is determined by the range of fluctuations of E ( I ,  y). 

An important source of disorder in most of the materials we have considered is 
substitutional alloy disorder: we have ignored the effects of local fluctuations in the 
composition of the crystal lattice, implicitly assuming that the effects of the well width 
fluctuations are dominant. The correlation length of the substitutional alloy disorder 
is very short (comparable to the atomic spacing). In the case of very short-ranged 
disorder our classical localization model does not apply. The problem of Anderson 
localization at the band edges for a potential with short-ranged correlations has been 
treated by Lifshitz (1%T), and Halperin and Lax (1!?66). They show that the density 
of states near the edge of the band has a distinctive non-Gaussian tail, with a universal 
functional form. The development of a theory for the ‘Stokes shift’ of the exciton 
spectrum appears to be difficult for this case. 

Experiments on bulk semiconductor alloys have indicated linear relationships 
between the ‘Stokes shift’ of the luminescence spectrum and the inhomogeneous 
broadening of the absorption spectrum, which are analogous to the relationship we 
have discovered in multilayer systems. In bulk alloys it is found empirically that 
the lower edge of the absorption profile obeys ‘Urbach’s rule’ (Urbach 1953): the 
absorption coefficient is given by 

a ( w )  = ~oexP(w/ws). (-47) 

Permogorov and Reznitsky (1992) have found that the ratio of the offset S 
of the photoluminescence and absorption peaks to the Urbach parameter us is 
approximately 5.0 in many bulk semiconductor alloys. Naumov et a1 (1%) have 
found that the ratio of the exciton absorption linewidth W to ws is approximately 
2.6. Combining these results we find that 7 = S/W is approximately 1.9 for the bulk 
alloys. This is considerably larger than the value y - 0.6 we observed in multilayer 
systems, indicating that the origin of the Stokes shift is different in these systems. 
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